Benfotiamin inhibits intracellular formation of advanced Glycation endproducts in vivo.

Benfotiamin inhibits intracellular formation of advanced Glycation endproducts in vivo.

Diabetes. 2000 May; 49(Suppl1): A143(P583).

The best , i use and I feel better ! All the medications one can see in our product lists are generic.

Lin J, Alt paper writing service A, Liersch J, Bretzel RG, Brownlee MA, Hammes HP.

We have demonstrated previously that intracellular formation of the advanced glycation end product (AGE) N-[Epsilon]-(carboxymethyl)lysine (CML) inversely correlates with diabetic vascular complications independently from glycemia (Diabetologia 42, 603, 1999). Here, we studied the effect of benfotiamine, a lipid-soluble thiamine derivative with known AGE-inhibiting properties in-vitro on the intracellular formation of (CML) and methylglyoxal-derived AGE in red blood cells. Blood was collected from 6 Type 1 diabetic patients (2m, 4f, age 31.8 ± 5.5 years; diabetes duration 15.3 ± 7.0 years) before and after treatment with 600 mg/day benfotiamine for 28 days. In addition to HbA1c (HPLC), CML and methylglyoxal were measured using specific antibodies and a quantitative blot technique. While treatment with benfotiamine did not affect HbA1c levels (at entry: 7.18 ± 0.86%; at conclusion 6.88 ± 0.88%; p not significant), levels of CML decreased by 40% (737 ± 51 arbitrary units/mg protein (AU) vs 470 ± 86 AU; p<0.01). The levels of intracellular methylglyoxal were reduced by almost 70% (1628 ± AU vs 500 ± 343 AU; p<0.01). The data indicate that thiamine derivatives are effective inhibitors of both intracellular glycoxidation and AGE formation.

Enhanced by Zemanta